952 research outputs found

    Tyrosine transport in Neurospora

    Get PDF
    Tyrosine transport in Neurospor

    Galaxy evolution within the Kilo-Degree Survey

    Get PDF
    The ESO Public Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will scan 1500 square degrees in four optical filters (u, g, r, i). Designed to be a weak lensing survey, it is ideal for galaxy evolution studies, thanks to the high spatial resolution of VST, the good seeing and the photometric depth. The surface photometry have provided with structural parameters (e.g. size and S\'ersic index), aperture and total magnitudes have been used to derive photometric redshifts from Machine learning methods and stellar masses/luminositites from stellar population synthesis. Our project aimed at investigating the evolution of the colour and structural properties of galaxies with mass and environment up to redshift z0.5z \sim 0.5 and more, to put constraints on galaxy evolution processes, as galaxy mergers.Comment: 4 pages, 2 figures, to appear on the refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    SDSS-DR9 photometric redshifts

    Get PDF
    Accurate photometric redshifts for large samples of galaxies are among the main products of modern multiband digital surveys. Over the last decade, the Sloan Digital Sky Survey (SDSS) has become a sort of benchmark against which to test the various methods. We present an application of a new method to the estimation of photometric redshifts for the galaxies in the SDSS Data Release 9 (SDSS-DR9). Photometric redshifts for more than 143 million galaxies were produced. The MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) model provided within the framework of the DAMEWARE (DAta Mining and Exploration Web Application REsource) is an interpolative method derived from machine learning models. The obtained redshifts have an overall uncertainty of sigma=0.023 with a very small average bias of about 3x10^-5, and a fraction of catastrophic outliers of about 5%. This result is slightly better than what was already available in the literature, particularly in terms of the smaller fraction of catastrophic outliers

    A catalogue of photometric redshifts for the SDSS-DR9 galaxies

    Get PDF
    Accurate photometric redshifts for large samples of galaxies are among the main products of modern multiband digital surveys. Over the last decade, the Sloan Digital Sky Survey (SDSS) has become a sort of benchmark against which to test the various methods. We present an application of a new method to the estimation of photometric redshifts for the galaxies in the SDSS Data Release 9 (SDSS-DR9). Photometric redshifts for more than 143 million galaxies were produced and made available at the URL: http://dame.dsf.unina.it/catalog/DR9PHOTOZ/. The MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) model provided within the framework of the DAMEWARE (DAta Mining and Exploration Web Application REsource) is an interpolative method derived from machine learning models. The obtained redshifts have an overall uncertainty of sigma=0.023 with a very small average bias of about 3x10^-5, and a fraction of catastrophic outliers of about5%. This result is slightly better than what was already available in the literature, also in terms of the smaller fraction of catastrophic outliers

    Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

    Get PDF
    The importance of the current role of data-driven science is constantly increasing within Astrophysics, due to the huge amount of multi-wavelength data collected every day, characterized by complex and high-volume information requiring efficient and, as much as possible, automated exploration tools. Furthermore, to accomplish main and legacy science objectives of future or incoming large and deep survey projects, such as James Webb Space Telescope (JWST), James Webb Space Telescope (LSST), and Euclid, a crucial role is played by an accurate estimation of photometric redshifts, whose knowledge would permit the detection and analysis of extended and peculiar sources by disentangling low-z from high-z sources and would contribute to solve the modern cosmological discrepancies. The recent photometric redshift data challenges, organized within several survey projects, like LSST and Euclid, pushed the exploitation of the observed multi-wavelength and multi-dimensional data or ad hoc simulated data to improve and optimize the photometric redshifts prediction and statistical characterization based on both Spectral Energy Distribution (SED) template fitting and machine learning methodologies. They also provided a new impetus in the investigation of hybrid and deep learning techniques, aimed at conjugating the positive peculiarities of different methodologies, thus optimizing the estimation accuracy and maximizing the photometric range coverage, which are particularly important in the high-z regime, where the spectroscopic ground truth is poorly available. In such a context, we summarize what was learned and proposed in more than a decade of research

    Euclid: Superluminous supernovae in the Deep Survey

    Get PDF
    Context. In the last decade, astronomers have found a new type of supernova called superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z ~ 4 and therefore, offer the possibility of probing the distant Universe. Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA’s Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS. To estimate the uncertainties, we calculated their distribution with two different set-ups, namely optimistic and pessimistic, adopting different star formation densities and rates. We also applied a standardization method to the peak magnitudes to create a simulated Hubble diagram to explore possible cosmological constraints. Results. We show that Euclid should detect approximately 140 high-quality SLSNe-I to z ~ 3.5 over the first five years of the mission (with an additional 70 if we lower our photometric classification criteria). This sample could revolutionize the study of SLSNe-I at z > 1 and open up their use as probes of star-formation rates, galaxy populations, the interstellar and intergalactic medium. In addition, a sample of such SLSNe-I could improve constraints on a time-dependent dark energy equation-of-state, namely w(a), when combined with local SLSNe-I and the expected SN Ia sample from the Dark Energy Survey. Conclusions. We show that Euclid will observe hundreds of SLSNe-I for free. These luminous transients will be in the Euclid data-stream and we should prepare now to identify them as they offer a new probe of the high-redshift Universe for both astrophysics and cosmology.Acknowledgements. We thank the internal EC referees (P. Nugent and J. Brichmann) as well as the many comments from our EC colleagues and friends. C.I. thanks Chris Frohmaier and Szymon Prajs for useful discussions about supernova rates. C.I. and R.C.N. thank Mark Cropper for helpful information about the V IS instrument. C.I. thanks the organisers and participants of the Munich Institute for Astro- and Particle Physics (MIAPP) workshop “Superluminous supernovae in the next decade” for stimulating discussions and the provided online material. The Euclid Consortium acknowledges the European Space Agency and the support of a number of agencies and institutes that have supported the development of Euclid. A detailed complete list is available on the Euclid web site (http://www.euclid-ec.org). In particular the Agenzia Spaziale Italiana, the Centre National dEtudes Spatiales, the Deutsches Zentrum für Luft- and Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciênca e a Tecnologia, the Ministerio de Economia y Competitividad, the National Aeronautics and Space Administration, The Netherlandse Onderzoekschool Voor Astronomie, the Norvegian Space Center, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), the United Kingdom Space Agency, and the University of Helsinki. R.C.N. acknowledges partial support from the UK Space Agency. D.S. acknowledges the Faculty of Technology of the University of Portsmouth for support during his PhD studies. C.I. and S.J.S. acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. [291222]. C.I. and M.S. acknowledge support from EU/FP7-ERC grant No. [615929]. E.C. acknowledge financial contribution from the agreement ASI/INAF/I/023/12/0. The work by KJ and others at MPIA on NISP was supported by the Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) under grant 50QE1202. M.B. and S.C. acknowledge financial contribution from the agreement ASI/INAF I/023/12/1. R.T. acknowledges funding from the Spanish Ministerio de Economía y Competitividad under the grant ESP2015-69020-C2- 2-R. I.T. acknowledges support from Fundação para a Ciência e a Tecnologia (FCT) through the research grant UID/FIS/04434/2013 and IF/01518/2014. J.R. was supported by JPL, which is run under a contract for NASA by Caltech and by NASA ROSES grant 12-EUCLID12-0004

    Antimicrobial Stewardship Strategies Including Point-of-Care Testing (POCT) for Pediatric Patients with Upper-Respiratory-Tract Infections in Primary Care: A Systematic Review of Economic Evaluations

    Get PDF
    Upper-respiratory-tract infections (URTIs) are among the main causes of antibiotic prescriptions in pediatric patients. Over one-third of all antibiotic prescriptions for URTIs in children are estimated to be inappropriate, as the majority of URTIs are caused by viral agents. Several strategies, including clinical scoring algorithms and different point-of-care tests (POCTs) have been developed to help discriminate bacterial from viral URTIs in the outpatient clinical setting. A systematic review of the literature was conducted following PRISMA guidelines with the objective of summarizing evidence from health-economic evaluations on the use of POCT for URTIs in pediatric outpatients. A total of 3375 records identified from four databases and other sources were screened, of which 8 met the inclusion criteria. Four studies were classified as being of high reporting quality, and three were of medium quality. Five out of eight studies concluded in favor of strategies that included POCTs, with an additional study finding several POCTs to be cost-effective compared to usual care but over an acceptable WTP threshold. This review found POCT could be a valuable tool for antimicrobial stewardship strategies targeted towards childhood URTIs in primary care

    VST - VLT Survey Telescope Integration Status

    Full text link
    The VLT Survey Telescope (VST) is a 2.6m aperture, wide field, UV to I facility, to be installed at the European Southern Observatory (ESO) on the Cerro Paranal Chile. VST was primarily intended to complement the observing capabilities of VLT with wide-angle imaging for detecting and pre-characterising sources for further observations with the VLT.Comment: 2 pages, 2 figures, conferenc
    corecore